Habitat Testbed (HaT)

Completed Technology Project (2010 - 2012)

Project Introduction

A key capability of the Deep Space Habitat project is the Deep Space Habitat Testbed. The DSH Testbed serves as the proof of concept and early integration platform for Deep Space Habitation subsystems and technologies in a vehicle like context. Its purpose is to perform early integration and risk reduction of habitation systems while developing the capabilities needed for human exploration missions. The DSH Testbed also enables affordable development of DSH capability through partnerships and collaborations.

Goals of the DSH Testbed include: Function as a habitat systems integrator and technology pull across many domains Develop and integrate softwarebased models of habitat systems with system to system interdependencies Enable maturation of select habitat systems Integration of physical hardware where available Distributed testing to link to other facilities The DSH Testbed provides a place to build the instance of the DSH vehicle, and as a result provide integration testing of habitat subsystems and technologies in a vehicle-like context. Some of these technologies include: WSN Power Avionics Software Impact Detection Comm Crew Systems (Displays, TRWS, programmable lighting) Testing in an incremental fashion, subsystems can be added on to the core architecture, modularly removed and replaced, and finally matured. Subsystems also do not have to be physically present in order to be included in the testbed. The DSH Testbed is able to perform a combination of local and distributed connectivity to hardware and software to complete vehicle integration. Finally, subsystems can be varying maturity levels, and even exist as simulations. The DSH Testbed is able to host subsystem models and simulations and stress them in the integrated habitat context.

Anticipated Benefits

.

Project Image Habitat Testbed (HaT)

Table of Contents

Project Introduction	1
Anticipated Benefits	1
Organizational Responsibility	1
Primary U.S. Work Locations	
and Key Partners	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	2
Images	3

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Center / Facility:

Johnson Space Center (JSC)

Responsible Program:

Center Innovation Fund: JSC CIF

Habitat Testbed (HaT)

Completed Technology Project (2010 - 2012)

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
☆Johnson Space	Lead	NASA	Houston, Texas
Center(JSC)	Organization	Center	
• Ames Research	Supporting	NASA	Moffett Field,
Center(ARC)	Organization	Center	California
Glenn Research Center(GRC)	Supporting Organization	NASA Center	Cleveland, Ohio
Jacobs Engineering Group, Inc.	Supporting Organization	Industry	Dallas, Texas
Jet Propulsion Laboratory(JPL)	Supporting	NASA	Pasadena,
	Organization	Center	California
Kennedy SpaceCenter(KSC)	Supporting	NASA	Kennedy Space
	Organization	Center	Center, Florida
Marshall SpaceFlight Center(MSFC)	Supporting	NASA	Huntsville,
	Organization	Center	Alabama

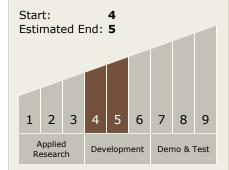
Project Management

Program Director:

Michael R Lapointe

Program Manager:

Carlos H Westhelle


Project Manager:

Daniel B Carrejo

Principal Investigator:

Daniel B Carrejo

Technology Maturity (TRL)

Technology Areas

Primary:

- TX10 Autonomous Systems

 TX10.2 Reasoning and
 Acting
 - □ TX10.2.5 Fault Diagnosis and Prognosis

Center Innovation Fund: JSC CIF

Habitat Testbed (HaT)

Completed Technology Project (2010 - 2012)

Primary U.S. Work Locations		
Alabama	California	
Florida	Ohio	
Texas		

Images

12148-1379535324069.jpgProject Image Habitat Testbed (HaT)
(https://techport.nasa.gov/imag e/2303)

